
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



160 www.thelancet.com/infection   Vol 14   February 2014

Review

Internet-based surveillance systems for monitoring 
emerging infectious diseases
Gabriel J Milinovich, Gail M Williams, Archie C A Clements, Wenbiao Hu

Emerging infectious diseases present a complex challenge to public health offi  cials and governments; these challenges 
have been compounded by rapidly shifting patterns of human behaviour and globalisation. The increase in emerging 
infectious diseases has led to calls for new technologies and approaches for detection, tracking, reporting, and 
response. Internet-based surveillance systems off er a novel and developing means of monitoring conditions of public 
health concern, including emerging infectious diseases. We review studies that have exploited internet use and search 
trends to monitor two such diseases: infl uenza and dengue. Internet-based surveillance systems have good congruence 
with traditional surveillance approaches. Additionally, internet-based approaches are logistically and economically 
appealing. However, they do not have the capacity to replace traditional surveillance systems; they should not be 
viewed as an alternative, but rather an extension. Future research should focus on using data generated through 
internet-based surveillance and response systems to bolster the capacity of traditional surveillance systems for 
emerging infectious diseases. 

Introduction
Emerging infectious diseases are of particular concern to 
public health. Emergence is driven by sociocultural, 
environmental, and ecological factors.1 The vulnerability 
of people to emerging infectious diseases has been shown 
by the emergence of AIDS in the late 1970s, severe acute 
respiratory syndrome (SARS) in 2003, pandemic infl uenza 
H1N1 in 2009, and multidrug-resistant nosocomial 
pathogens, as well as the re-emergence of dengue, 
chikungunya, and malaria. Traditionally, eff ective disease 
surveillance is expensive and needs a formal public health 
network.2 Such systems are maintained by most countries, 
to varying degrees. Data sources, surveillance methods, 
analytical approaches, and factors aff ecting these systems 
are varied and have been reviewed in detail elsewhere.3,4 
Traditional, passive surveillance systems typically rely on 
data submitted to the relevant public health authority by 
physicians, laboratories, and other health-care providers; 
they provide information crucial to the eff ective func-
tioning of health systems.5 These systems can be com plex 
and expensive. Time and resource constraints, as well as a 
lack of operational knowledge of reporting systems, 
adversely aff ect the completeness of reporting,6 resulting 
in an incomplete account of disease emergence. Further-
more, substantial lags between an event and its notifi cation 
are common; a result of late or failed reporting and the 
hierarchical structure of these systems.7 The average delay 
from receipt to dissemination of data by traditional 
sentinel surveillance networks is roughly 2 weeks.8

Internet availability and use has increased greatly in 
the past 10 years (fi gure 1).9,10 The availability of health-
related information on the internet (of varying quality 
and legitimacy) has also changed how people seek 
information about health.10,11 These changes provide a 
new means to detect and monitor infectious diseases. 
The nature of emerging infectious diseases often limits 
the eff ectiveness of traditional surveillance systems.12 
Digital surveillance could improve both the sensitivity 
and timeliness of detection of health events.13

We review recent studies that have exploited internet 
use and search trends to monitor two acute-onset viral 
illnesses of worldwide importance that have substantial 
seasonal and geographic variation: infl uenza and dengue. 
We critically analyse the eff ectiveness of monitoring 
internet data to track these diseases and discuss the 
advantages and limitations of this approach. Finally, we 
make recommendations for future research into these 
systems.

Digital surveillance
Digital surveillance attempts to provide knowledge of 
public health issues by analysis of health information 
stored digitally, as well as the distribution and patterns 
governing access to these data. Approaches to digital 
surveillance vary according to the media targeted. 
However, all exploit changes in behaviour related to 
information seeking, collection, storage, and 
communication pathways that have occurred with the 
development and increased availability of the internet 
and associated technologies.

Several surveillance systems use non-structured, event-
based, digital data.14 The Global Public Health Intelligence 
Network (GPHIN)—developed by the Public Health 
Agency of Canada— automatically retrieves information 
about potential public health emergencies from news feed 
aggregators and distributes this information to public 
health agencies, including the WHO Global Outbreak 
Alert and Response Network.2,15 The eff ectiveness of this 
system was shown during the SARS outbreak; GPHIN 
detected SARS more than 2 months before the fi rst 
publications by the WHO.2 Other systems—eg, 
HealthMap16 and ProMED-mail17,18—provide information 
about emerging public health problems by aggregating 
information about emerging diseases from various 
structured and non-structured data sources. These and 
other similar systems are reviewed elsewhere.13,14,19

Internet use has increased consistently in almost every 
country.20 Internet users in the USA alone generate 

Lancet Infect Dis 2014; 
14: 160–68

 Published Online
November 28, 2013

http://dx.doi.org/10.1016/
S1473-3099(13)70244-5

Infectious Disease 
Epidemiology Unit, School of 

Population Health, The 
University of Queensland, 

Herston, QLD, Australia 
(G J Milinovich PhD, 

Prof G M Williams PhD, 
Prof A C A Clements PhD, 

W Hu PhD); and School of Public 
Health and Social Work, 

Queensland University of 
Technology, Kelvin Grove, QLD, 

Australia (W Hu)

Correspondence to:
Gabriel J Milinovich, School of 

Population Health, University of 
Queensland, Herston, QLD 4006, 

Australia
g.milinovich@uq.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1016/S1473-3099(13)70244-5&domain=pdf


www.thelancet.com/infection   Vol 14   February 2014 161

Review

8 million queries for health-related information every 
day.21 The increase in worldwide internet availability and 
use over the past 10 years, combined with these changes 
in health-seeking behaviour, has created new possibilities 
for the development of innovative surveillance 
systems.9,10,22,23 Although still very much in its infancy, 
analysis of digital data has been used to monitor 
communicable2,24–33 and non-communicable diseases,34,35 
as well as mental health,36,37 illegal drug use,38 health 
policy impact,39 and behaviours with potential health 
implications.40

Numerous studies have sought to exploit online health-
seeking behaviour to monitor disease incidence. 
Although these studies use diff erent data sources, they 
all rely on the premise that people who contract a disease 
will seek information about their condition from the 
internet and that incidence can be estimated by tracking 
changes in frequencies of searches for key terms. By 
monitoring search queries submitted to the search 
engine Yahoo!, Polgreen and colleagues41 predicted 
increases in positive infl uenza cultures1–3 weeks before 
their occurrence. Similarly, Hulth and co-workers42 
developed a model for estimating intensity and peak 
incidence of infl uenza in Sweden by monitoring queries 
submitted to the medical web site Vårdguiden. This 
model correlated closely with both data for infl uenza-like 
illness (R²=0·89) and laboratory-confi rmed cases of 
infl uenza (R²=0·90). A subsequent study showed this 
model to have good congruence with sentinel data over 
the course of the 2009 infl uenza H1N1 pandemic 
(r=0·88–0·90).43 More recently, infl uenza incidence in 
China was estimated by assessment of searches 
submitted to Baidu (the most commonly used search 
engine in China).44 This study reported a correlation of 
R²=0·96 between a composite search index (eight terms) 
and monthly Ministry of Health infl uenza reports. 
Furthermore, using a combination of Ministry of Health 
and Baidu data, the researchers produced accurate 
estimates (R²=0·95) of incidence 1–2 weeks before of 
Ministry of Health reports.

Google search queries also correlate highly with 
disease incidence. Historical logs of aggregated Google 
search queries—presented as normalised time series—
are publically available through Google Trends from 
Jan 1, 2004. These data are available by country, state, 
and city in the USA, but only at country-level for many 
other regions (especially low-income countries). 
Previously, Google off ered two user interfaces to access 
search reports: Google Trends and Google Insights for 
Search, which were merged in September, 2012.45 
Carneiro and Mylonakis24 used Google Trends to analyse 
worldwide search frequency for the term “bird fl u”. They 
reported an increase in search frequency between 2005, 
and 2006, coinciding with the spread of avian infl uenza 
from China to Turkey. Other studies reported the use of 
Google search data to monitor the frequency of searches 
for manually selected terms related to infl uenza in 

Chinese,46 Spanish,31 and French.28 These studies 
reported high degrees of correlation, which shows the 
potential application of this technology in languages 
other than English. Ginsberg and colleagues47 used an 
automated approach to select search terms from Google 
search logs with the greatest correlation with the US 
Infl uenza Sentinel Provider Surveillance Network of the 
US Centers for Disease Control and Prevention (CDC). 
The terms were then used to develop a model for 
monitoring infl uenza activity. Estimates from the model 
correlated highly with regional Centers for Disease 
Control and Prevention data (r=0·80–0·96, nine regions) 
and accurately estimate incidence of infl uenza-like 
illness 1–2 weeks before surveillance reports.47 An online 
infl uenza surveillance tool—Google Flu Trends—is 
based on the model of Ginsberg and coworkers and now 
includes 29 countries.

To date, two publications have reported the use of 
internet search data to estimate incidence of dengue. Chan 
and colleagues48 used a similar method to Ginsberg and 
coworkers47 to create models of dengue transmission for 
Bolivia, Brazil, India, Indonesia, and Singapore. 
Correlations between model estimates and holdout 
surveillance data (data excluded from the model, used for 
validation) were high for all countries (r=0·83–0·99). 
These models have been used to develop a free, publically 
available online resource for dengue surveillance: Google 
Dengue Trends. Althouse and colleagues49 used Google 
Insights for Search to monitor searches for dengue-related 
terms and applied these results to step-down linear 
regression models for Bangkok (Thailand) and Singapore. 
Both models showed a high degree of correlation with 
surveillance data (R²=0·95 for Bangkok and 0·94 for 
Singapore). Additionally, this study developed support 
vector machine50 and logistic regression models to predict 
periods of high dengue incidence. Area-under-the-receiver-
operating-characteristic-curve, using the 75th percentile, 
was 0·960 for Bangkok and 0·906 for Singapore according 

Figure 1: Internet access in resource-rich and resource-poor countries
Data taken from the International Telecommunications Union.9
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to the support vector machine model compared with 0·960 
and 0·896 respectively for the logistic regression model.

Google Flu Trends
Several studies have compared the performance of 
Google Flu Trends with national data for infl uenza-like 
illness. Google Flu Trends was visually compared with 
surveillance data for Australia51 and New Zealand52 over 
the course of the 2009 H1N1 infl uenza pandemic. Both 
studies reported good correlation. Another Australian 
study compared Google Flu Trends and emergency 
department presentation or hospital admissions for 
infl uenza-like illness in 2006–09 (r=0·35 for 2006, r=0·88 
for 2007, r=0·91 for 2008, and r=0·76 for 2009).53 These 
fi ndings accord with the results of Hulth and colleagues43 
and Valdivia and colleagues54 who showed that Google 
Flu Trends correlated strongly with estimates of infl uenza 
incidence and peak incidences produced from data 
collected by sentinel physician networks throughout 
Europe. Finally, Google Flu Trends correlated highly with 
the Electronic Surveillance System for the Early 
Notifi cation of Community-Based Epidemics (ESSENCE; 
a syndromic surveillance system run by the US 
Department of Defence; r=0·88)55 and with infl uenza-
like illness estimates produced for Flanders, Belgium, by 
the Great Infl uenza Survey (a weekly, online infl uenza 
survey; r=0·62–0·94).56

Traditional infl uenza surveillance systems commonly 
monitor incidence with virological data, rather than 
infl uenza-like illness. Data from Google Flu Trends was 
highly correlated with data from the US Infl uenza 
Virologic Surveillance System (r=0·72);57 however, this 
correlation was lower than that reported for Google Flu 
Trends and CDC infl uenza-like illness data (r=0·94). 
Google Flu Trends estimates have been reported to 
correlate highly with laboratory-confi rmed infl uenza at a 
provincial and city level. Malik and colleagues12 reported 
the correlation between weekly counts of laboratory-
confi rmed H1N1 infl uenza cases in Manitoba, Canada, 
and Google Flu Trends data during the 2009 infl uenza 
pandemic (R²=0·69; 2 week lag). Similarly, Google Flu 
Trends had a high level of congruence with virology data 
from a Baltimore hospital (adult r=0·88; paediatric 
r=0·72).58 Dugas and coworkers58 noted that Google Flu 
Trends correlated well with paediatric emergency 
department crowding measures, leading them to suggest 
that Google Flu Trends could be used for strategic 
management of emergency department resources. The 
potential applications of Google Flu Trends data to 
strategic allocation of resources and priority setting is 
further shown by Patwardhan and Bilkovski,59 who 
compared sales of four drugs commonly prescribed for 
treatment of infl uenza with Google Flu Trends and CDC 
ILINet data; aggregate correlation between Google Flu 
Trends and prescription sales was r=0·92 .

Any changes to the status quo of internet search 
behaviour could alter how well Google Flu Trends models 

actual infl uenza incidence. Loss of resolution might occur 
as a result of media-driven interest or through other 
events that change search behaviour.43,49,57,58,60,61 Google Flu 
Trends accounts for changing search behaviour by 
updating the model each year to best represent reference 
surveillance data.62 Despite this precaution, a loss of 
resolution was reported to have occurred during the 2009 
H1N1 infl uenza pandemic.53,58 Cook and coworkers62 
updated the Google Flu Trends model with a larger pool of 
candidate queries, less common queries, and historical 
logs that included searches done during the initial months 
of the 2009 H1N1 infl uenza pandemic. The new model 
incorporated roughly 160 queries versus 45 used in the 
original model. Although the original Google Flu Trends 
model had a high degree of correlation with ILINet data 
before the 2009 pandemic (September, 2003, to March, 
2009; r=0·91) and over the entire course of the outbreak 
(March–December, 2009; r=0·91), correlation during the 
initial wave of the pandemic was low (March–August, 
2009; r=0·29). Correlations of the updated Google Flu 
Trends model were higher for all periods analysed, most 
notably during the initial wave (r=0·95). These results 
show the eff ect that changing search behaviours can have 
on surveillance systems based on internet search queries 
and the importance of continual assessment of the 
performance of such systems.

Predictive models and integration of surveillance systems based 
on internet search queries
Studies have predominantly focused on retrospective 
assessment of the performance of Google Flu Trends. 
However, almost real-time disease tracking can be done 
by application of Google Flu Trends data to a season-
specifi c compartmental mathematical model.63 Google 
Flu Trends data can also be used for early detection of 
epidemics.64 Pervaiz and colleagues applied various 
algorithms to Google Flu Trends data to develop early 
epidemic detection systems capable of generating 
actionable alerts. Although this study did not identify a 
single best method, it showed the potential use of Google 
Flu Trends data in this manner. Zhou and coworkers65 
have developed a system to predict epidemic alert levels 
from daily Google Trends data. Hidden Markov model-
based methods predicted infl uenza alert levels in real-
time with 97·7% accuracy and provided an indication of 
infl uenza activity up to 4 weeks ahead of the release of 
CDC reports. In another recent study, ensemble 
adjustment was used to assimilate Google Flu Trends 
data into a humidity-driven compartmental mathematical 
model, enabling real-time predictions of peaks to be 
made more than 7 weeks in advance of their occurrence.66 
Finally, using a negative binomial generalised auto-
regressive moving average model—which included 
Google Flu Trends data as a secondary variable—Dugas 
and colleagues67 predicted weekly infl uenza cases at a 
medical centre with a high degree of accuracy (83% of 
estimates were within seven cases).
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These models are promising and, overall, Google Flu 
Trends seems to provide timely and accurate estimates of 
infl uenza-like illness and laboratory-confi rmed infl uenza. 
However, methods to integrate this information into 
existing surveillance systems need to be developed.55  
Scarpino and colleagues68 postulated that the predictive 
power of the Texas ILINet could be improved by use of a 
smaller set of carefully chosen sentinel providers. 
Additionally, they investigated the potential of 
incorporating Google Flu Trends data into the network as 
a virtual provider. Google Flu Trends was reported to have 
a high degree of correlation with the ILINet in Texas 
(R²=0·77 at a 0 week lag). It was the most informative 
provider, matching the predictive performance of an 
optimised network of 44 sentinel providers.

Social media
The power of social media as both a source of information 
and as a means of disseminating information is 
increasingly recognised in public health.69,70 Corley and 
colleagues71 have proposed that infl uenza incidence could 
be estimated by tracking use of key terms in web and 
social media. They analysed the frequency of English 
language blog posts that contained the terms “infl uenza” 
or “fl u” and compared these with CDC ILINet data. 
Correlation was r=0·63 for this study and r=0·55 in a 
subsequent study with an extended dataset.72 Microblogs 
(such as Twitter) were not included in these studies. 
Collier and coworkers73 used supervised learning to 
categorise expressions from Twitter messages into fi ve 
infl uenza-related categories and correlated these 
expressions with CDC data for positive infl uenza A H1N1 
tests. Correlations in this study (r=0·58–0·67) were 
similar to those for Corley and colleagues.71,72 Chew and 
Eysenbach74 sorted Twitter posts containing terms related 
to infl uenza A H1N1 into groups describing “personal 
experiences” or “concern” and compared these with 
H1N1 incidence rates in the USA. Correlations were 
r=0·77 for “personal experiences” and r=0·66 for 
“concern”. These correlations are not as high as those 
reported for approaches based on internet search queries. 
However, Lampos and Cristianini75 reported correlations 
of up to r=0·933 for their analysis of infl uenza created 
with a supervised learning framework compared with 
infl uenza-like illnesses reported by the UK Health 
Protection Agency. They concluded that a supervised 
learning framework is a suitable method for selection of 
features for use in digital surveillance systems. Culotta76 
reported that the accuracy of estimates could be improved 
by use of a document classifi cation component; they 
reported correlations of up to r=0·97.

Advantages and limitations of web-based 
surveillance systems
Google Flu Trends usually showed an increase of 
infl uenza incidence 0–2 weeks before traditional systems. 
Internet-based surveillance systems circumvent the 

bureaucratic structure of traditional systems. Further-
more, they target a diff erent section of the community to 
traditional surveillance systems. Zeng and Wagner’s77 
model of patient behaviour during epidemics identifi es 
four phases in health-care seeking: recognition of 
symptoms, interpretation of symptoms, representation 
of illness, and seeking treatment. Traditional surveillance 
systems only source data from people seeking treatment. 
Internet-based surveillance systems access people from 
not just the fi nal phase, but also the earlier interpretation 
of symptoms and representation of illness phases.48 
However, internet-based surveillance systems are limited 
to people who seek health-related information on the 
internet (or proxies, such as parents or carers of sick 
children). Despite this limitation, they can capture many 
cases. Attrition during disease pathogenesis or health-
seeking pathways is both high and cumulative—results 
of a study done in rural Cambodia showed that 67% of 
cases of haemorrhagic fever were treated at home, rather 
than in a health facility; thus, a health-care-based 
surveillance system would miss 67% of information 
before it even becomes accessible.78 Systems that target 
points earlier in surveillance will produce more timely 
information. For an infl uenza epidemic with a 20% 
infection rate, 10% clinical attack rate, 2% case hospital 
admission rate, and 0·1% symptomatic case fatality 
rate,79 the fraction of the population assessable by an 
internet-based surveillance system (7488 people per 
100 000 patients) would be nearly ten-times that of a 
traditional system (750 people per 100 000 patients), for a 
population with the internet use of an average high-
income country (76·8%; fi gure 2).9

Internet-based surveillance systems work best for large 
populations24 and their use can be limited by national 
infrastructure (fi gure 3). Although the fraction of people 
assessable with an internet-based system in the average 
low-income country (30·7% internet access) is only 
2993 people per 100 000 patients (fi gure 2), this fraction 
still exceeds that of a traditional surveillance system 
(750 people per 100 000 patients). The number of people 
who have access to the internet is not the only relevant 
factor. Internet use and health-seeking behaviour vary 
between diff erent sectors of the community.23,80 The 
accuracy of national Google Flu Trends estimates is 
positively correlated with the proportion of the population 
who use the internet to obtain health-related 
information.54 However, large discrepancies exist 
between availability and uptake of the internet, and 
seeking health-care information as a proxy for disease 
has biases stemming from unequal use and access.20

The spatial resolution of Google Flu Trends (and 
Google Trends) is improving. At present, Google Flu 
Trends off ers some city-level estimates of infl uenza 
incidence in the USA but probably has neither the 
sensitivity nor spatial resolution necessary to detect 
small, localised outbreaks.12 Spatial resolution is limited 
by the level of data aggregation and search volume; 
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resolution should improve over time as overall internet 
access increases and the internet becomes more widely 
accepted as a source of health-based information.54 
Results of these systems should also be interpreted 
carefully. Although internet-based surveillance systems 
seem to have high correlation with traditional surveillance 
systems, overall correlations could hide short-term 
periods of high variance.62

Translation of internet-based data into an accurate, 
meaningful, and useful format is a challenge. Bias 
introduced by self-reporting and media-driven interest 
might be the biggest confounder of internet-based 
surveillance systems. Targeting microblogs has the 
potential to track, not just disease activity, but also related 
community concerns and perceptions.73 However, the 
frequency of posts on social media is generally accepted 
to be a function of personal experience and perception of 
what an individual believes the ir friends and followers 
would fi nd interesting, rather than a true refl ection of the 
occurrence of an event.81 Similarly, the media drive search 
frequency. An increase in searches for “bird fl u” occurred 
in the USA between 2005 and 2006, despite no avian 
infl uenza being detected; this trend was attributed to 
media-driven interest about the infl uenza outbreak 
aff ecting Asia at the time.24 A similar occurence was 
reported for dengue-related searches in India in 2006; an 
unusually large spike in searches was attributed to news 
that a member of the prime minister’s family had been 

admitted to hosptial for dengue.48 To reduce the eff ect of 
media-driven searches, the Google Dengue Trends model 
replaces spikes that exceed the mean of the previous 
4 weeks by fi ve SDs with an imputed value.48 Media-
driven behaviour does not exclusively aff ect internet-
based surveillance systems. On April 26, 2009, the US 
CDC declared a national public-health emergency in 
response to the emerging H1N1 pandemic; the following 
week was termed fear week.61 Despite state-wide viral 
surveillance data showing little infl uenza activity, 
emergency department patient volumes increased 
substantially. A similar trend occurred in a Baltimore 
paediatric emergency department.58 Because changes in 
Google Flu Trends over this period correlated with the 
increase in emergency department patient volumes, the 
investigators suggested that Google Flu Trends could 
have a role in planning emergency department surge 
capacity;58 rather than representing infl uenza incidence, 
Google Flu Trends identifi ed public perceptions of the 
threat of infl uenza and predicted the associated increase 
in health-care demand.

Unlike systems that rely on input from health-care 
practitioners or laboratories, internet-based surveillance 
instruments are unlikely to become overwhelmed during 
a pandemic and, because they are automated, are 
available year-round (contingent on suffi  cient search 
volume), whereas traditional networks might only 
operate seasonally.82 These internet-based systems could 
be of particular use in countries with poorly developed 
traditional surveillance systems.52 However, imple-
mentation of such systems in these countries is fraught 
with diffi  culties. Internet-based surveillance systems 
work on the premise that disease incidence correlates 
with frequency of information-seeking using specifi c 
terms. Textual information can be diffi  cult to classify and 
interpret83 and accuracy might be heavily aff ected by 
cultural nuances, language shifts, and use of 
colloquialisms or even memes. The model of Collier and 
coworkers73 needed a fi lter to reduce the eff ect of terms 
such as “Bieber fever” (which refers to infatuation with 
Canadian pop musician Justin Bieber) on the keyword of 
interest, “fever”. Changes to search behaviours and 
information-seeking practices will aff ect the performance 
of these models;62 furthermore, such changes are unlikely 
to occur uniformly. The re-emergence of infectious 
diseases with similar clinical presentations—eg, 
chikungunya in dengue-endemic areas—also presents a 
diffi  culty.48 Models should be designed for a specifi c 
system (country or region) and be validated against 
reference data before they are used to guide health policy 
or action. As such, they cannot replace traditional 
surveillance.42

The problem of privacy has been raised by several 
researchers.2,48,83 For ethical reasons, data are de-identifi ed 
or—in the case of data from Google—aggregated before 
public release, precluding identifi cation of the source of 
specifi c posts or searches. Although not a problem in 
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itself, this process could make interpretation diffi  cult. 
Content cannot be connected with individuals and care 
should be taken not to commit an ecological fallacy—to 
make inferences about the characteristics of individuals 
based on aggregate data.36 Finally, the security of health 
information is an imperative.84 Google Flu Trends and 
Google Dengue Trends are operated by the philanthropic 
arm of Google, which is a publicly listed company. 
Although these services are freely available, Google does 
not release the search terms used in the algorithms; 
caution is urged in relying too heavily on closed-source 
data that are under the control of a multinational company.

Integration of internet-based surveillance 
technologies into existing surveillance systems
Few studies have explored how to translate internet-
based surveillance systems into a public health response. 
Search queries submitted to Vårdguiden have been used 
to develop an automated system for generation of reports 
about epidemiological trends.85 GET WELL (Generating 
Epidemiological Trends from WEb Logs, Like) extracts 
search queries from Vårdguiden logs, aggregates the data 
(weekly), and produces time-series graphs. Additionally, 
the system enables custom statistical analyses to be 
integrated; this function is routinely used for norovirus 
and infl uenza. GET WELL is used by Swedish Institute 
for Infectious Disease Control in conjunction with 
traditional surveillance networks to identify emerging 
concerns and to focus epidemiological investigations.

The potential for internet-based surveillance systems to 
revolutionise emerging infectious disease surveillance 
was shown by Scarpino and colleagues.68 They presented 
a method for optimisation of sentinel surveillance 
networks that enabled integration of Google Flu Trends 
into the network as a virtual provider (enabling it to 
function as a sentinal provider reporting infl uenza-like 
illness within the community). Google Flu Trends alone 

explained roughly 60% of infl uenza-associated hospital 
admissions in Texas; which is equivalent to the 
performance of an optimised sentinel network with 
44 providers (R²=0·63). Furthermore, Google Flu Trends 
outperformed the 2008 Texas ILINet which drew 
information from 82 providers (R²=0·57). An optimised 
network of 82 providers outperformed Google Flu Trends 
(R²=0·77); however, the best predictive performance was 
achieved by optimised hybrid networks, which allowed 
use of Google Flu Trends as a virtual provider. Allowing 
Google Flu Trends as a virtual provider in a network of 
82 providers increased predictive performance by a 
further 12·5% (R²=0·90).68 These studies show potential 
applications of internet-based surveillance systems in 
bolstering traditional surveillance system capacity and 
guiding public health action. However, the routine 
integration of non-traditional, unstructured, internet-
based data into existing surveillance systems will 
necessitate a change in the structure and rhetoric of units 
responsible for surveillance if it is to be eff ectively 
translated into public health action.86

Future research
To date, most studies of internet-based surveillance 
systems are retrospective analyses of performance; the 
prospective performance of these systems needs to be 
assessed. Future studies should not only focus on 
development of new detection methods nor on application 
of these methods to new diseases, but they should also 
explore ways to integrate these approaches into existing 
systems.55 In doing so, care must be taken to ensure that 
new systems add to the capacity of old ones. The potential 
application of internet-based surveillance systems is not 
restricted to surveillance. They can also be strategic 
instruments for resource management and allocation,58,59 
which warrants further investigation. Finally, despite the 
potential of internet-based surveillance systems, they 

Figure 3: Percentage of population who use the internet, by country
2012 data9 were used for all countries, except the British Virgin Islands (2010).

No data available
<20%
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have not been applied with a global focus. Strategies for 
surveillance of infectious diseases have been criticised for 
focusing too heavily on high-income countries.87 New 
infectious diseases emerge all over the world and their 
emergence is aff ected by many sociocultural, economic, 
environmental, and ecological factors.1 The international 
nature of emerging infectious diseases, combined with 
the globalisation of travel and trade, have increased the 
interconnectedness of all countries. Strategies to detect, 
monitor, and control emerging infectious diseases should 
recognise this change—these diseases are a global 
concern. The potential to develop global surveillance 
systems for emerging infectious diseases that use 
internet-based data should be explored.

Assessment of internet queries for surveillance of 
emerging infectious diseases is a new concept that has 
been applied with promising results. These systems are 
appealing from a logistical, economical, and 
epidemiological standpoint. Internet-based systems are 
intuitive, adaptable, operate in almost real-time and, 
once established, are cheap to operate and maintain.12 
Furthermore, these systems do not rely on the health-
care system to provide and analyse data, or a government 
to disseminate information and advise the international 
community of emerging concerns—all limitations of 
traditional surveillance systems. However, internet-based 
surveillance does not provide an alternative to traditional 
surveillance systems. Rather, these systems are an 
extension of traditional systems. The societal eff ect and 
extent of spread of infectious diseases within a 
community cannot be measured by any one surveillance 
system.43 Surveillance systems should be fl exible, built 
with models that incorporate several means of collecting 
information, and integrate information from other 
sources to create a comprehensive understanding of 
and approach to addressing emerging problems.86 

Further more, addressing emerging infectious diseases is 
con tingent on their recognition as global, rather than 
regional, issues. A global response requires concerted 
international approaches to strengthen the capacity of 
emerging infectious diseases surveillance systems 
worldwide. Future research needs to focus on how to use 
internet-based surveillance systems to complement 
existing systems.
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